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Abstract

Discretization of singular functions is an important component in many problems to which level set methods have

been applied. We present two methods for constructing consistent approximations to Dirac delta measures concen-

trated on piecewise smooth curves or surfaces. Both methods are designed to be convenient for level set simulations

and are introduced to replace the commonly used but inconsistent regularization technique that is solely based on a

regularization parameter proportional to the mesh size. The first algorithm is based on a tensor product of regularized

one-dimensional delta functions. It is independent of the irregularity relative to the grid. In the second method, the reg-

ularization is constructed from a one-dimensional regularization that is extended to multi-dimensions with a variable

support depending on the orientation of the singularity relative to the computational grid. Convergence analysis and

numerical results are given.

� 2005 Published by Elsevier Inc.
1. Introduction

In this paper, we study regularization methods for the Dirac delta function in the context of the level set

method. This involves Dirac delta functions concentrated on a wide class of piecewise smooth, closed man-

ifolds that are embedded through suitable continuous functions defined in Euclidean spaces of higher

dimensions.

The level set method [8,10] is a highly successful computational technique for tracking the evolution of

curves and surfaces. In connection to many applications of the level set method, the formulation includes a
0021-9991/$ - see front matter � 2005 Published by Elsevier Inc.

doi:10.1016/j.jcp.2004.09.018

* Corresponding author. Fax: +1 212 995 4121.

E-mail address: tornberg@cims.nyu.edu (A.-K. Tornberg).
1 Research partially sponsored by NSF Grant DMS-9973341.
2 Research partially sponsored by Swedish VR-Grant No. 222-2000-434.
3 Research is supported in part by the National Science Foundation under agreement No. DMS-0111298.

mailto:tornberg@cims.nyu.edu 


B. Engquist et al. / Journal of Computational Physics 207 (2005) 28–51 29
Dirac delta measure supported on these curves or surfaces. In a typical level set method, the curves or

surfaces are described implicitly as the zero level set of a continuous function, discretized on a uniform

Cartesian grid. Singular Dirac delta functions are commonly regularized before they are represented on

the computational grid. In the case of immiscible multiphase flow, regularization is applied to the singular

surface tension forces supported on the interfaces separating the fluids [8,11]. Similarly, it has been used in
other applications such as dendritic solidification and shape optimization problems [2], ranging from pho-

tonic crystals to active contours in image processing [8]. Typically, these applications include the compu-

tation of enforcing constraints defined on the surfaces using some variational approaches; see e.g. [3,18].

In light of a recent result [13] showing that the most common technique for regularization of the delta

function in level set methods is inconsistent, and may lead to O(1) errors, the purpose of this paper is to

develop consistent and effective regularizations that conveniently can be used in connection to level set

methods.

There are a number of other useful methods for handling singularities in differential equations that are
not based on regularization. Examples are the ghost fluid method and the immersed interface method, see

e.g. [7,6]. Discussion of these types of techniques are beyond the scope of this paper.

Let C � Rd be a d � 1 dimensional continuous and bounded surface and let s be surface coordinates on

C. Define dðC; g; xÞ; x 2 Rd as a delta function of variable strength supported on C such that
I ¼
Z
Rd

dðC; g; xÞf ðxÞ dx ¼
Z

C
gðsÞf ðXðsÞÞ ds; ð1Þ
where X(s) 2 C.
Now assume that the space Rd is covered by a regular grid;
fxjgj2Zd ; xj ¼ ðxð1Þj1
; . . . ; xðdÞjd

Þ;

xðkÞjk
¼ xðkÞ0 þ jkhk; jk 2 Z; k ¼ 1; . . . ; d:

ð2Þ
Since we will consider fully general C there is no restriction if we fix xðkÞ0 and we will for simplicity let
xðkÞ0 ¼ 0; k ¼ 1; . . . ; d in the rest of the paper.

In the level set method, C is defined by a level set function /ðxÞ : Rd ! R,
C ¼ fx j /ðxÞ ¼ 0g:

We will first consider the case for which /(x) = d(C, x), where d(C, x) is the signed distance function to C,
and then proceed to study the extension to a non-distance function /. Let C divide Rd into two disjoint

subsets X1 and X2. Then
dðC; xÞ ¼
distðC; xÞ; x 2 X1;

�distðC; xÞ; x 2 X2;

�
ð3Þ
where dist(C, x) denotes the Euclidean distance from x to C, i.e., dist(C, x) = miny 2 C|y � x|.

The integral in Eq. (1) generally appears in the level set literature as
I ¼
Z
Rd

~gðxÞdðdðC; xÞÞf ðxÞ dx ¼
Z
Rd

~gðxÞf ðxÞdð/ðxÞÞjr/ðxÞj dx; ð4Þ
where ~g is an extension of g to Rd , such that ~gðXðsÞÞ ¼ gðsÞ. In this paper, we will not discuss the extension

of g to ~g. Methods for such extensions can, for example, be found in [8,10]. As Eq. (4) indicates, an extra

scaling of |$/| is needed for the non-distance function / in order to get the correct metric on C. We shall see
later that this factor will play a role in our regularizations.

In later sections, different techniques will be used to regularize the d-function, and we will therefore use

the more general notation
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dðC; g; xÞ ¼ ~gðxÞdðC; xÞ: ð5Þ

The delta function d(C, x) will be replaced by a continuous function de(C, x) of compact support. This
regularized function will be discretized on the regular grid introduced in Eq. (2), and the integral over this

function will be computed by evaluating a Riemann sum.

We define the discretization error as
E ¼
Yd
k¼1

hk

 !X
j2Zd

deðC; g; xjÞf ðxjÞ �
Z

C
gðsÞf ðXðsÞÞ ds

������
������ ð6Þ
following the definition in Eq. (1).

With f ” g ” 1, and C, a curve in R2, the s-coordinate being the arclength along C, the error E is the error

made in computing the length of the curve. More general, g-functions are common for singular source

terms in differential equations, where d(C, g, x) represents a physical force along an interface, such as an

elastic force or a surface tension force. In Section 4.2, we shall see that the error term in Eq. (6) also plays

an important role in the numerical approximation of differential equations.

Using the distance function d(C, x) explicitly, for g ” 1 we can define
deðC; g; xÞ ¼ deðC; xÞ ¼ deðdðC; xÞÞ; ð7Þ

where de is a one-dimensional regularization of the delta function and 2e is the width of the support of de.

For this definition, it is possible to analyze the error in Eq. (6) by splitting it into an analytical and a numer-

ical part, and consider those separately [12,14]. This analysis requires that de is sufficiently resolved on the

underlying grid, and the result yields consistency and an optimal scaling of the regularization parameter e
relative to the mesh size h, e � ha, 0 < a < 1.

For a very narrow support, the de function is not sufficiently resolved to analyze the error by splitting it
into these two parts. Instead, the error must be analyzed directly, taking into account discrete effects of the

computational grid. In practice, this kind of approximations have been used with narrow support with e
proportional to h, typically e = mh, with m = 1, 2 or 3. This approach works well in one dimension, when

the one-dimensional delta approximation obeys certain discrete moment conditions as discussed below.

However, its extension to multi-dimension might lead to O(1) errors, as has been shown for a curve C in

R2 [13].

In one dimension, one can show [1] that the discretization error E 6 Chq if the one-dimensional de func-

tion satisfies q discrete moment conditions, i.e., if
h
X1
j¼�1

deðxj � �xÞðxj � �xÞr ¼
1; r ¼ 0;

0; 1 6 r < q

�
ð8Þ
for all values of �x. If de satisfies q moment conditions, we will say that it has a moment order q. The result

E 6 Chq carries nicely over to several dimensions if this multidimensional delta approximation is defined by

the following product formula:
deðC; g; xÞ ¼
Z

C

Yd
k¼1

dek ðxðkÞ � X ðkÞðsÞÞgðsÞ ds ð9Þ
in which dek corresponds to the one-dimensional regularized d function, x = (x(1), . . . ,x(d)),
X(s) = (X(1)(s), . . . ,X(d)(s)) is a parameterization of C and e = m(h1, . . . ,hd). The grid sizes h1, . . . ,hd refers
to the regular grid introduced in Eq. (2). This was proved in [13]. This product formula is often used in
methods, where C is explicitly defined, for example in the immersed boundary method of Peskin [9].

When C is not explicitly defined, the product formula is not a convenient definition. In level set methods,

it is more natural to define de(C, x) = de(d(C, x)), or with a level set function / that is not a distance func-
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tion, including an appropriate scaling, as will be discussed in Section 5.1. However, as noted above, this

does not work well with the choice of constant e, proportional to the grid size, e = mh, h = h1 = � � � = hd,

which has been the most common choice in practice. This is further discussed in Section 2.

In this paper, we derive two techniques for regularizing the delta function when C is defined implicitly the

distance function, d(C, x). These two techniques are then conveniently extended to the case of a non-
distance level set function. In both cases, the resulting regularized delta functions depend only on the level

set function but not the underlying grid. In Section 3.1, we introduce an approximation of the product rule

in Eq. (9), that can be defined using the distance function to C, d(C, x), together with the gradient of this

function. We prove that this regularization gives first-order convergence for continuous and piecewise C2

curves C in R2. We conjecture that the regularization is also second-order accurate in the grid size h for

smooth C. Numerical tests confirm this hypothesis.

The second approach, introduced in Section 3.2, is the one most simple to apply. It uses the same

definition as in Eq. (7), but instead of a constant e = e0, it uses a variable support of the regularized delta
function, such that e = e($d, e0). We prove that for a constant f in Eq. (6), the error E = 0 for a line C in R2

with a rational slope on a large class of grids, and O(h) for more general settings. Numerical tests indicate

that the method is first-order accurate in the grid size h also for a general C.
Numerical results for these two methods, both in connection to quadrature and to the numerical solution

of a partial differential equation with a singular source term, are presented in Section 4. In Section 5, we

discuss the generalization of the approaches presented in Section 3 for the following cases: (1) non-distance

level set functions, (2) regularization of characteristic functions, (3) C as a surface in three dimensions.

We show numerical results for each of the cases listed above, and finally discuss the possible extension
to manifolds of higher codimension.
2. Discrete regularization of singularities

In this section, we begin by discussing the regularization of a one-dimensional d-function, introducing
the essential discrete moment conditions. We continue by discussing the extension to several dimensions

and address the inconsistency of the extension using the distance function as in Eq. (7), with the regular-
ization parameter proportional to the grid size.

Let us start this discussion with the definition of the discrete moment conditions.

Definition 2.1. A function de(x) 2 Qq if de has compact support in [�e, e], e = mh, m > 0 and
Mrðde;�x; hÞ ¼ h
X1
j¼�1

deðxj � �xÞðxj � �xÞr ¼
1; r ¼ 0;

0; 1 6 r < q

�
ð10Þ
for any �x 2 R, where xj = jh, h > 0, j 2 Z.

The first moment condition, for r = 0, ensures that the mass of the delta function is identically 1, inde-

pendent on shifts in the grid. The higher moment conditions are useful when the delta function is multiplied

by a non-constant function, as we will see in the proposition below. The following result was given in [1].

Proposition 1. Suppose that de 2 Qq, q > 0 as in Definition 2.1, f ðxÞ 2 CqðRÞ, and that all derivatives of f are

bounded, then
E ¼ h
X1
j¼�1

deðxj � �xÞf ðxjÞ � f ð�xÞ
�����

����� 6 Chq;
and E = 0 if f is constant.
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From this proposition, we see that the numerical accuracy is determined by the moment order of the

delta function approximation. The discretization error E can be interpreted as the error made when inte-

grating by the trapezoidal rule, with �x away from the boundary. It can also be regarded as the error in inter-

polating f at �x from the grid values of f, the choice of de determining the interpolation weights.

In [13], it was shown that such an de 2 Qq exists if and only if 2e P qh. The most compact de approxi-
mation that obeys q moment conditions may however not be continuous. In computations, it is most prac-

tical to deal with continuous de functions, and we define approximate delta functions de on the form
deðxÞ ¼
1
e wðx=eÞ; jxj 6 e ¼ mh;

0 jxj > e ¼ mh;

�
ð11Þ
where de 2 CðRÞ, i.e., w(�1) = w(1) = 0. With this notation, the linear hat function dL
e is defined as above

with
wLðnÞ ¼ 1� jnj ð12Þ

and the much used cosine function dcos

e with,
wcosðnÞ ¼ 1
2
ð1þ cosðpnÞÞ: ð13Þ
For both these approximations, the mass condition, i.e., the moment condition for r = 0 is fulfilled for

mP 1 integer with e = mh for the linear hat function, and e = (m + 1)/2h for the cosine function. The

moment condition for r = 1 is not satisfied for the cosine approximation, and hence it is of moment

order one. The linear hat functions are of moment order two. From Proposition 1, we have that the

error is of O(h) for the cosine function, and O(h2) for the linear hat function. It is possible to construct

approximations of higher moment order. In [13], a de function based on a cubic polynomial with e = 2h

with moment order four was introduced, and approximations with even higher moment orders can be

found in [17].
As mentioned in Section 1, one approach to create a regularization of a d-function with support on a

multidimensional C such as a curve in R2 or R3 or a surface in R3, is to use the product formula in Eq.

(9). In this manner, a one-dimensional de function is used in each coordinate direction, and in [13], Torn-

berg and Engquist proved the following theorem.

Theorem 1. Suppose that de 2 Qq, q > 0, as in Definition 2.1; g 2 CrðRdÞ and f 2 CrðRdÞ, r P q. Then for

any rectifiable curve C and de(C, g, x) as defined in Eq. (9) based on de, it holds that
E ¼
Yd
k¼1

hk

 !X
j2Zd

deðC; g; xjÞf ðxjÞ �
Z

C
gðSÞf ðXðSÞÞ dS

������
������ 6 Chq ð14Þ
with h ¼ max16k6dhk and E ¼ 0 for constant f.

The accuracy of delta function approximations defined by this product formula will hence be determined

by the number of discrete moments that the one-dimensional de function obeys, and it is therefore simple to

construct regularizations of desired accuracy. The product definition is however not convenient for defining

the de-function when C is defined implicitly through a distance function, since it requires the explicit param-
eterization of C.

As discussed in Section 1, a common technique for extending the regularized one-dimensional delta func-

tion to several dimensions in connection to the level set method is to define
deðC; xÞ ¼ deðdðC; xÞÞ: ð15Þ

The choice of the support in practical level set simulations has mainly been e = h or e = 2h, for discretization
on regular grids [8,10]. In [13], it was shown that such a choice may result in an O(1) error, by using an
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example of a curve C 2 R2, that is a straight line at an angle of 45� to the x(1)-axis;

C ¼ fx; xð1Þ ¼ xð2Þ; 0 6 xð1Þ < �S=
ffiffiffi
2

p
g. For completeness, we briefly review this derivation.

Considering the calculation of the length |C|,
jCj ¼ �S ¼
Z
R2

dðC; xÞ dx ð16Þ
computed using a de approximation on a regular grid,
�Sh ¼ h2
X
j2Z2

deðdðC; xjÞÞ; xðkÞjk
¼ jkh; jk 2 Z; k ¼ 1; 2; ð17Þ
it was shown that, with de ¼ dL
h , the narrow linear hat function, this yields
�Sh ¼
3�

ffiffiffi
2

p
ffiffiffi
2

p �S þOðhÞ;
which results in a relative error ðj�Sh � �Sj=�SÞ of over 12% as h ! 0. Repeating the exercise for the wider

piecewise linear hat function with e = 2h the result is
�Sh ¼ 1
4
ð5

ffiffiffi
2

p
� 3Þ�S þOðhÞ;
which yields a relative error of 1.8% as h ! 0.

Numerical tests were conducted to illustrate this fact. Here, let C be defined as two parallel lines of length

L at a normal distance 2a, joined at both ends by a half circle of radius a. The angle of the lines to the x-axis

is h = p/4. A sketch of C is plotted in Fig. 1. The total length of C is �S ¼ 2Lþ 2pa.
We again define the relative error in the computation of the length of C as E ¼ j�Sh � �Sj=�S, with �S and �Sh

as defined in Eqs. (16) and (17). In Fig. 2, the relative error E is plotted versus 1/h, where h is the grid size,

for different values of L and a. In the left plot, we display the results for the narrow piecewise linear hat

function, dL
h . In this plot, we can clearly see that there is no convergence as h is decreased. As a/L decreases,

the error from the straight lines dominates more and more, and for a ¼ 0:03
ffiffiffi
2

p
; L ¼ 4:0 (line marked with

e) the relative error is close to the 12% as predicted for the straight lines. In the right plot, the results

are plotted for the wider hat function, dL
2h. The errors are smaller in this case, but also here, we have no

convergence as h is decreased, and for a ¼ 0:03
ffiffiffi
2

p
; L ¼ 4:0 (line marked with e) we again approach the

predicted relative error for the straight line, in this case 1.78%.

Even though the size of the O(1) error may vary for different delta approximations in this example, the

order of the error does not depend on the specific choice of the delta function approximation de, that is used

to define de(d(C, x)). The accuracy of the one-dimensional regularizations, as well as the multidimensional
extension by the product rule, relies on the discrete moment conditions. For the delta approximations with
Fig. 1. Sketch of curve C.



Fig. 2. The relative error E ¼ j�Sh � �Sj=�S plotted versus 1/h, with �S and �Sh defined as in Eqs. (16) and (17). The delta function

approximation is based on the linear hat function, in the left figure with e = h, in the right with e = 2h. C as shown in Fig. 1, with

L = 2.0, a ¼ 0:24
ffiffiffi
2

p
(·), L = 2.0, a ¼ 0:06

ffiffiffi
2

p
(s), L = 4.0, a ¼ 0:03

ffiffiffi
2

p
(e).
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compact support that we are studying here, the mass condition and possibly higher moment conditions are

fulfilled for e = mh, wherem is an integer, and possibly also for 2e = bh, with b an integer. However, if e does
not relate to h in the required way, even the mass condition is in general no longer fulfilled, leading to an

O(1)-error, as was shown in [14]. Similarly in this two-dimensional case, with C at some arbitrary angle

to the grid lines, no such discrete sums will in general evaluate correctly, and hence we obtain an O(1) error.

This choice of C shows a special case with large errors. All local errors in the linear part of C have the

same sign and no cancellation of errors occur. This case was selected since it clearly illustrates the substan-

tial O(1) errors that do exist for this approach.
3. New discrete regularization techniques

In this section, we introduce two new consistent techniques for regularizing a delta function based on the

distance function to C and its gradient.

3.1. Approximate product formula

From Theorem 1, we know that when a multidimensional delta function approximation is defined by the
product rule in Eq. (9), we can control the accuracy by the design of the one-dimensional d-function
approximation. The product rule does however require an explicit parameterization of C, and is therefore

not convenient for defining the de-function when C is defined implicitly through a distance function. It

is however possible to construct an approximation to this product rule, where we only make use of the

distance function and its gradient.

Consider a curve C in two dimensions. As defined in Eq. (3), we use d(C, x) to denote the signed distance

function that embeds C, and we assume that e = e1 = e2. An approximation to the product definition of de in
a point x can be computed by
~deðC; xÞ ¼
Z

C
dL

e ðx� �X ðx; sÞÞdL
e ðy � �Y ðx; sÞÞ ds; ð18Þ
where ð�X ðx; sÞ; �Y ðx; sÞÞ; s 2 R is the tangent line to �x 2 C, the closest point on C to x. The one-dimensional

de function is the linear hat function. Due to the compact support of the one-dimensional de-function, this

integrand is non-zero only in the box [x � e,x + e] · [y � e,y + e], and within this box, the tangent line
�Xðx; sÞ ¼ ð�X ðx; sÞ; �Y ðx; sÞÞ will be close to C, see Fig. 3.



Fig. 3. The integrand in Eq. (18), defining ~deðC; xÞ; x ¼ ðx; yÞ, is non-zero only in the box [x � e, x + e] · [y � e, y + e]. Within this box,

C is approximated by the tangent line �C. To evaluate the integral, intersections of ~C with the grid lines must be computed.
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Hence, to evaluate the integral in Eq. (18), we need to define the straight line ð�X ðx; sÞ; �Y ðx; sÞÞ and find

how it cuts through this box. Define this line by
�Cðx; sÞ :¼
�X ðx; sÞ
�Y ðx; sÞ

� �
¼ x� dðC; xÞ

cos h

sin h

� �
þ s

� sin h

cos h

� �� �
;

where s is the arclength and h is the angle of the normal vector n�C of �C to the x-axis, with n�C defined to point

into the region where d(C,x) > 0.

Using the definition of the linear hat function, the integral in Eq. (18) is defined as
~deðC; xÞ ¼
Z s2

s1

1

e
1� 1

e
jd cos h � s sin hj

� �
1

e
1� 1

e
jd sin h þ s cos hj

� �
ds

¼ 1

e

Z s2=e

s1=e
1� d

e
cos h � ~s sin h

����
����

� �
1� d

e
sin h þ ~s cos h

����
����

� �
d~s; ð19Þ
where d = d(C, x) and s = s1, s = s2 are the s-values at which ð�X ðsÞ; �Y ðsÞÞ intersects the boundaries of the box
[x � e, x + e] · [y � e, y + e].

The evaluation of the integrals will depend on the sign of the arguments within the two absolute signs.

The line integral can conveniently be split into different pieces, such that each lies within one quadrant of

the box [x � e, x + e] · [y � e, y + e]. To define these segments, in addition to s1 and s2 we need to define (if

applicable), s ¼ sx0 such that ð�X ðsx0Þ; �Y ðsx0ÞÞ ¼ ðx; �Y ðsx0ÞÞ, and s ¼ sy0 such that ð�X ðsy0Þ; �Y ðs
y
0ÞÞ ¼ ð�X ðsy0Þ; yÞ, see

Fig. 3. This requires finding intersection of straight lines.
Since the integrand is an even function, we can restrict h to h 2 [0, p/2] and compute it by h = arctan(|dy/dx|),

i.e., using the components of$d. LetK = [s1, s2]. Then, ~deðC; xÞ, as defined in Eq. (18) and subsequently in Eq.
(19) can be evaluated as
~deðC; xÞ ¼

I e
þ;þðs1; s2; d; hÞ if sx0; s

y
0 62 K;

I e
þ;þðs1; sx0; d; hÞ þ I e

�;þðsx0; s2; d; hÞ if sx0 2 K and sy0 62 K;

I e
þ;�ðs1; s

y
0; d; hÞ þ I e

þ;þðs
y
0; s2; d; hÞ if sx0 62 K and sy0 2 K;

I e
þ;�ðs1; s

y
0; d; hÞ þ I e

þ;þðs
y
0; s

x
0; d; hÞ þ I e

�;þðsx0; s2; d; hÞ if sx0; s
y
0 2 K;

8>>><
>>>:
where d = d(C, x). Using c1 = ±1 and c2 = ±1 to represent the signs in the subscript, the integrals above

evaluate as I e
c1;c2

ðsa; sb; d; hÞ ¼ Ic1;c2ðsa=e; sb=e; d=e; hÞ=e, where
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Ic1;c2ða; b; ~d; hÞ ¼
Z b

a
1þ c1 ~d cos h � a sin h

� 	� 	
1þ c2 ~d sin h þ a cos h

� 	� 	
da

¼ 1

2
c1c2 sin 2h½a�ba~d

2 þ 1

2
c1c2 cos 2h½a2�ba þ ðc1 cos h þ c2 sin hÞ½a�ba

� �
~d

þ � 1

6
c1c2 sin 2h½a3�ba þ

1

2
ð�c1 sin h þ c2 cos hÞ½a2�ba þ ½a�ba

� �
: ð20Þ
A derivation of the parameters s1; s2; sx0; and sy0 using d(C, x) and its gradient is presented in Appendix A.

In the following theorem, we show that our approximation is at least first-order accurate.

Theorem 2. Let ~deðC; xÞ denote the approximate delta function as defined in Eq. (18) with e = mh, m integer.

Then there is a constant CP 0 such that
E ¼ h2
X
j2Z2

~deðC; xjÞf ðxjÞ �
Z

C
f ðX ðsÞÞ ds

������
������ 6 Ch;
assuming that C � R2 is piecewise C2 and of bounded length.

Proof. Let dLe ðC; xÞ be the delta approximation defined by the product rule in Eq. (9), as based on the one-

dimensional hat function dLek , with e1 = e2 = e = mh, where h(1) = h(2) = h, and with g ” 1. Then, from

Theorem 1, we have that
h2
X
j2Z2

dL
e ðC; xjÞf ðxjÞ �

Z
C
f ðX ðsÞÞ ds

������
������ 6 D1h

2 ð21Þ
since the hat function is of moment order two ðdL
e 2 Q2Þ.

Let
I ¼ h2
X
j2Z2

dL
e ðC; xjÞf ðxjÞ; ~I ¼ h2

X
j2Z2

~deðC; xjÞf ðxjÞ:
With this, we have
E ¼ ~I �
Z

C
f ðX ðsÞÞ ds

����
���� 6 ~I � I

�� ��þ I �
Z

C
f ðX ðsÞÞ ds

����
����; ð22Þ
where the second part is bounded by D1h
2 as given in Eq. (21). Now, we want to show that j~I � I j 6 D2h,

for some constant D2.

Define J to be the index set such that j = (j1, j2) 2 J if andonly ifminsðmaxðjxj1 � X ðsÞj; jyj2 � Y ðsÞjÞÞ 6 mh.
The number of indices in J : |J| 6 C1h

�1 since C is bounded. We have that
jI � ~I j 6 h2
X
j2J

jdL
e ðC; xjÞ � ~deðC; xjÞjjf ðxjÞj ¼ � A þ � B; ð23Þ
where �A is the sum over the index set JA, where JA contains all indices of points near (Euclidean distance

smaller than mh
ffiffiffi
2

p
) a point where C is not C1, and �B is the sum over the remaining terms.

There are finitely many such points, |JA| 6 C2, which implies
� A 6 h2C2C3h
�1kf kL1 ¼ D3h
since C3h
�1 is the bound for the point values of dL

e and
~de. For the rest of the sum (denoted by B above), C is

C1, and we have
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� B ¼ h2
X
j2JB

jdL
e ðC; xjÞ � ~deðC;xjÞjjf ðxjÞj 6 h2C1h

�1 max
j2JB

jdL
e ðC; xjÞ � ~deðC; xjÞj f ðxjÞ



 


L1

6 hC4�D;
where C4 ¼ C1kf kL2 and �D ¼ maxj2JB jdL
e ðC; xjÞ � ~deðC; xjÞj. Defining C = (X(s),Y(s)), and the tangent line

�Cðx; sÞ ¼ ð�X ðx; sÞ; �Y ðx; sÞÞ, we can write
�D ¼ max
j2JB

Z
C

dL
e ðxj1 � X ðsÞÞdL

e ðyj2 � Y ðsÞÞ ds�
Z
~C
dL

e ðxj2 � �X ðxj; sÞÞdL
e ðyj2 � �Y ðxj; sÞÞ ds

����
����;
where we have used the definitions of dL
e ðC; xjÞ (Eq. (9)) and ~deðC; xjÞ (Eq. (18)). Define the arclength variable s

in the different integrals such that �x, the closest point on C to xj, corresponds to s = 0 both on C and ~C. Let
s1; s2 and ~s1;~s2 denote the end points of the support of dL

e ðxj1 � X ðsÞÞdL
e ðyj2 � Y ðsÞÞ and dL

e ðxj1 � �X ðxj; sÞÞ
dL

e ðyj2 � �Y ðxj; sÞÞ along C and ~C, respectively. Then we have
�D 6

Z maxðs2;~s2Þ

minðs1;~s1Þ
dL

e ðxj1 � X ðsÞÞdL
e ðyj2 � Y ðsÞÞ � dL

e ðxj1 � �X ðxj; sÞÞdL
e ðyj2 � �Y ðxj; sÞÞ

��� ��� ds:

On each side, the integral over one of the curves is extended outside its original definition, but since such an

extended part falls outside of the support of the delta function, it yields no contribution, and hence, does

not change the value of the integral.

Now, let us write
dL
e ðxj1 � �X ðxj; sÞÞ ¼ dL

e ðxj1 � X ðsÞÞ þ � E;
and estimate the size of |�E|. We have that jX ðsÞ � �X ðxj; sÞj 6 C5h
2 from the bounded curvature of C, and

jðdL
e Þ

0j 6 C6h
�2. Using this, it follows that |�E| 6 C5h

2 Æ C6h
�2 = C5C6. �E is simply the remainder term in a

one term Taylor expansion of dL
e .

Similarly for
dL
e ðyj2 � �Y ðxj; sÞÞ ¼ dL

e ðyj2 � Y ðsÞÞ þ � F ;
it follows that |� F| 6 C5C6. Returning to the estimate for �D, we now have
�D 6

Z maxðs2;~s2Þ

minðs1;~s1Þ
jdL

e ðxj1 � X ðsÞÞjj� F j þ dL
e ðyj2 � Y ðsÞÞjj� Ej þ j� Ejj� F j

� �
ds

6 maxðs2;~s2Þ �minðs1;~s1Þð Þ � dL
e



 


L1

� C5C6 þ C2
5C

2
6

� �
:

This implies that D is bounded by a constant, �D 6 C7, and so B 6 C4C7h. From before, we had that �A is

bounded by D3h, and so from Eq. (23), jI � ~I j 6 D2h, for D2 = D3 + C4C7. This yields E 6 Ch, from Eq.

(22). h

The tangent line �Cðx; sÞ used to define ~deðC; xÞ depends on x, the point in which ~de is to be evaluated.
Hence, there is no global representation of �C, and a potential proof of more than first-order convergence

will be more complex and include the effect of cancellations over a large segment of C.
Now, assume that we instead define �C as the piecewise linear curve passing through all intersection

points of C and the grid lines, and define dL
e ð�C; xÞ for this �C using the product rule in Eq. (18), based on

the one-dimensional hat-function. This is the usual definition of a delta approximation, based on the prod-

uct rule, but with respect to �C instead of C. From Theorem 1, we then have,
h2
X
j2Z2

dL
e ð�C; xjÞf ðxjÞ �

Z
�C
f ð�X ðsÞ; �Y ðsÞÞ ds

������
������ 6 C1h

2; ð24Þ
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where the integral over f now is along �C. Furthermore, for a sufficiently regular C we can show that
Z
�C
f ð�X ðsÞ; �Y ðsÞÞ ds�

Z
C
f ðX ðsÞ; Y ðsÞÞ ds

����
���� 6 C2h

2;
where C2 depends on the curvature bound of C. For f ” 1, this is simply the difference in length between C
and �C. In total this yields,
h2
X
j2Z2

dL
e ð�C; xjÞf ðxjÞ �

Z
C
f ðX ðsÞ; Y ðsÞÞ ds

������
������ 6 ðC1 þ C2Þh2: ð25Þ
For this definition, we can hence show second-order convergence. This definition however requires explicit

computation of intersections of the zero level set and the grid lines. One has to recompute line segments in

order to define the delta function whenever the underlying grid is changed.

This is certainly possible, but we do not see any advantage over the one we propose through Eq. (18),
since the latter is solely based on distance functions, and can be used directly to different grids and even

curves that cannot be represented by conventional level set methods.

3.2. Variable regularization parameter

For the product rule discussed in the previous section, the effective support size of the approximate delta

function varies according to how C cuts through the given Cartesian grid. As measured in normal distance

from C, the approximate delta function assumes the widest support when C is diagonal to the grid, and the
smallest when C is parallel to the grid lines. In this section, we exploit this observation and derive a special

scaling of the support according to the grid orientation of C.
We will derive a scaling for e that depends on the gradient of the signed distance function d(C,x), such

that e = e($d, e0), where e0 is constant. The regularized delta function in any point x is then simply evalu-

ated as deðrd;e0ÞðdðC; xÞÞ, as based on a one-dimensional de function. The method will apply to general curves

C, but in order to derive e($d,e0), we begin by studying a case where C is a straight line. Let Cp, q denote the

line ðps; qsÞ; s 2 R, which is in the direction of the unit vector ðp; qÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
. Assume furthermore that p

and q denote two relative prime positive integers, i.e., two integers that have no common denominator
other than 1. We will show that with a choice of
e ¼ ~eðp; qÞ ¼ p þ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p

an exact summation property holds.

With this choice of ~eðp; qÞ, the region of support of the delta function d~eðp;qÞðdðCp;q; xÞÞ, for the segment of

Cp, q = (ps, qs) such that 0 6 s < 1, is the rectangle defined by
Rp;q ¼ x 2 R2 j x ¼ sðp; qÞ þ tð�q; pÞ; 0 6 s < 1;� p þ q
p2 þ q2

6 t 6
p þ q
p2 þ q2

� 

; ð26Þ
as depicted in Fig. 4. Let Ip;q � Z2 be the set of grid points z 2 Z2 contained within this rectangle, and let

I1p;q � Z2 be the set of grid points z 2 Z2 in such a rectangle for which �1 < t < 1.

We have the following lemma:

Lemma 1. There exist a pair of grid points zþk ; z�k 2 Z2 such that for any given k 2 Zþ,
distðzþk ;Cp;qÞ ¼ distðz�k ;Cp;qÞ ¼
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ q2
p ; ð27Þ



Fig. 4. The summation is done in the shaded region, the rectangle Rp,q as defined in Eq. (26), whose sides are
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
and 2~eðp; qÞ.
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where dist(z, Cp,q) is the smallest Euclidean distance between z and any point on Cp,q. Furthermore, there are
exactly two such grid points in I1p;q for each given k, and they are on different sides of Cp,q.

Proof. Let z ¼ ði; jÞ 2 Z2. The vector from Cp,q to z orthogonal to Cp,q, can be computed by subtracting off

the projection of z onto Cp,q from z. The length of this vector, which is the distance from z to Cp,q, is

distðz;Cp;qÞ ¼ j � iqþ jpj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
. Hence, we first need to show that there exist integers i, j so that

|�iq + jp| = k for any positive integer k.

This is equivalent to showing the existence of integer pairs �i;�j satisfying
�iqþ �jp ¼ 1; ð28Þ

since we can simply multiply �i and �j by �k and k, respectively, to define i and j and get one desired grid

point with distance k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
.

For any given two integers (p, q), the existence of integer pair ð�i;�jÞ satisfying Eq. (28) is equivalent to p

and q being relative primes [5]. Hence, our hypothesis on p, q being relative prime guarantees the existence

of zk = (i, j) for any integer k with distðzk;Cp;qÞ ¼ k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
.

If ði; jÞ 62 I1p;q, then one of the following points have the same distance to Cp;q : ðiþ sp; jþ sqÞ 2 I1p;q for

some s 2 Z. To see this, let i + sp = m and j + sq = n, where i, j, m, n are some integers. So s = (m � i)/p

= (n � j)/q and (m � i)q = (n � j)p. Since p and q are relative primes, q must be a factor of n � j, implying

that s = (n � j)/q is an integer. That there can be only one such point in I1p;q follows from the definition in

Eq. (26). A second point on the other side of Cp,q is given by (p � i,q � j). A similar argument as above

applies to this point. This proves that there are only two points zþk and z�k satisfying Eq. (27) in I1p;q, and that

they are on different sides of Cp,q. h

In addition to the points above, z ¼ ð0; 0Þ 2 Ip;q and dist(z, Cp,q) = 0. Let us now show the following

theorem.

Theorem 3. The Riemann sum of dL~eðp;qÞðdðCp;q; xÞÞ in Ip;q with
e ¼ ~eðp; qÞ ¼ p þ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p ð29Þ
yields the exact length of Cp,q within Rp,q as defined in Eq. (26), which is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
. Furthermore, the result is

invariant under any translation of Cp,q + f for f 2 [0,1) · [0,1), and the Riemann sum over Ip;q þ f.

Proof. The length of Cp,q in Ip;q is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
. By direct calculation, using the definition of the linear hat

function, we have (with dk ¼ k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
)
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S ¼
X
j2Ip;q

dL
e ðdðC; xjÞÞ ¼

1

e
þ 2

e

Xpþq

k¼1

1� dk

e

� �
¼ 1þ 2ðp þ qÞ

e
� 1

e2
ðp þ qÞðp þ qþ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ q2
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
;

where we have used e ¼ ~eðp; qÞ ¼ ðp þ qÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
. Notice that the sum over Tp;q is reduced to sum over

1 6 k 6 p + q since dL
e ðdkÞ ¼ 0 for dk ¼ k=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
P ðp þ qÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
,

We now show that this result is invariant under translation. The translation f 2 [0,1) · [0,1) is equivalent

to a displacement of Cp,q in the normal direction with distance g and 0 < g < 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
. By direct

summation, we have
S ¼
Xpþq

k¼0

1

e
1� 1

e
jk � gjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
 !

þ
Xpþq�1

k¼1

1

e
1� 1

e
k þ gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
 !

:

Summing up the 1/e terms, evaluating the terms for k = 0 and k = p + q, and combining the two sums into

one (noting that the g terms cancel out), we get
S ¼ 2ðp þ qÞ
e

� 1

e2
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ q2
p þ p þ q� gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ q2
p

 !
� 2

e2
Xpþq�1

k¼1

kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p ¼ 2ðp þ qÞ
e

� 1

e2
ðp þ qÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p :
Using e ¼ ðp þ qÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
, we have S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
. For g P 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
, we can always write

g ¼ ðk0 þ g0Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
, where k0 2 N, and 0 6 g0 < 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
. h

For an arbitrarily long line segment with slope q/p, the Riemann sum can be grouped into a fixed number

of sums identical to S in the proof above and a finite number of terms at the end points. These finite number

of terms result in an O(h) error as was shown in Proof of Theorem 2.
The scaling can be extended to computing surface area in three dimensions. Define
Rp;q;r ¼ x 2 R3 j x ¼ uðp; 0; rÞ þ vð0; q; rÞ þ wðp; q; rÞ; 0 6 u < 1; 0 6 v < 1;
�
� p þ qþ r
p2 þ q2 þ r2

6 w 6
p þ qþ r

p2 þ q2 þ r2



ð30Þ
and correspondingly let Ip;q;r � Z3 be the set of grid points z 2 Z3 contained within this rectangle. The

following theorem can then be shown by direct computation, analogous to the proof above,

Theorem 4. Let p, q and r be three positive integers that are relatively prime to each other. Let Cp,q,q be a

plane passing through the origin and orthogonal to (p, q, r). Then the Riemann sum of dLe ðdðC; xÞÞ in Ip;q;r
with
e ¼ p þ qþ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2 þ r2

p ð31Þ
yields the exact surface area of the the plane Cp,q,r : rz = px + qy confined in Ip;q;r. Furthermore, this result is

invariant under any translation of Cp,q,r + f, f 2 [0, 1)3.

Motivated by the above results, we propose an approximate delta function for a general C,
dL
eðrd;e0ÞðdðC; xÞÞ; ð32Þ
as based on the one-dimensional linear hat function dL
e , but with e scaled according to how C lies in the

given Cartesian grid.

Hence, given the distance function to C, d(C, x), we let p ¼ j o
ox dðC; xÞj; q ¼ j o

oy dðC; xÞj, and define e
according to Eq. (29). Additionally, in three dimensions, we define r ¼ j o

oz dCj, and set e according to
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Eq. (31). We remark that the denominators
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2 þ r2

p
are equal to |$d| in two and

three dimensions, respectively. Furthermore, we note that p + q and p + q + r, are the pointwise 1-norms

of $d(x) in two and three dimensions, respectively. Denote the 1 norm of a vector v by |v|1, and using

this, define
Fig. 5.

approx

lines in
eðv; e0Þ ¼ jvj1
jvj e0: ð33Þ
With v = $d, the regularization parameter in Eq. (32) simplifies to e($d,e0) = |$d|1e0 since |$d| = 1 for the

signed distance function.
4. Numerical results

4.1. Quadrature

In this section, we compute the discretization error E, as defined in Eq. (6), for a few different choices of

curves C 2 R2, and functions f(x). We test both new approaches as described in the previous sections. We

define ~deðC; xÞ using the approximate product formula, as in Eq. (18), and dL
eðrd;e0ÞðdðC; xÞÞ as in (32), with

the variable regularization parameter e($d, e0) as defined in Eq. (33).

First, let C be a circle with radius r ¼ 0:35
ffiffiffi
2

p
, centered in (x0, y0). The relative integration error for this C

has been computed with both f ” 1 and f ¼ er �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy � y0Þ

2
q

, see the two left most plots in Fig. 5.

In the right most plot in the same figure, the relative integration errors for the capsule shaped C as in Fig. 1

(with a ¼ 0:12
ffiffiffi
2

p
, L = 2), and f ” 1 have been plotted. To compute the relative integration errors, the

numerical results are averaged over 64 small irregular shifts in the grid in each of these cases, and the error

is normalized using the exact value of the integral. This procedure reveals the convergence of the mean error

which is less sensitive to the error constant that fluctuates according to the placement of C in a grid.

In Fig. 5, we note that the approximate product rule yields the best results. The average error shows a

second-order convergence. For the variable e approach, the errors are larger, and the convergence rates are
fluctuating more. On average, we have better than first order, but not second-order convergence.

Let us now define f ðxÞ ¼ r~f � nC, where nC is the normal vector to C, pointing into the region where

d(C,x) > 0. We have that nC = $d(C,x), and so we write
Z
C
f ðXðsÞÞ ds ¼

Z
C
r~f � nC ds ¼

Z
R2

r~f � rdðC; xÞdðC; xÞ dx: ð34Þ
The relative error in the integration for, from left to right: C circle, f ” 1; C circle, f ¼ er�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�x0Þ2þðy�y0Þ2

p
; C capsule, f ” 1. Delta

imation dL
�ðrd;hÞ (s), (variable e), and ~d

L

h (·) (approximate product rule). Error averaged over 64 shifts in the grid. The dashed

the plots are proportional to h and h2.



Fig. 6. The discretization error E as defined in Eq. (6) for different delta function approximations for the line integral in Eq. (34). From

left to right: dcos
h ðdðC;xÞÞ (constant e = h), dL

�ðrd;hÞðdðC; xÞÞ (variable e), and ~d
L

h (approximate product rule). The solid lines represent the

computed error. The dotted and dashed lines are proportional to h and h2, respectively.
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This integral evaluates to zero for f 2 C1ðR2Þ. It is therefore a good test case, since the exact result is known

for any such choice of ~f , independent on the choice of C.
In Fig. 6, we show the integration errors for this case, with C the capsule shaped curve as in Fig. 1 (with

a ¼ 0:1
ffiffiffi
2

p
and L = 1.4), and with ~f ðxÞ ¼ ~f ðx; yÞ ¼ cosðxÞ sinðyÞ. The errors have been averaged over 25

small irregular shifts in the grid.
The inconsistent formulation dcos

h ðdðC; xÞÞ as based on the cosine formula in Eq. (13), with a constant

e = h, is included for comparison, since this has been a frequently used approximation in connection to level

set methods. The capsule shape is in this case not as elongated as for the results presented in Fig. 2 in Section

2 for the linear hat functions, where the error did not decay at all. Here, the cancellation of errors in the circle

regions does yield some decay as we refine. However, the convergence rate is clearly lower than first order.

In agreement with Fig. 5, the other results show that the delta approximation dL
�ðrd;hÞ with a variable reg-

ularization parameter e yields a first order convergence, whereas the delta approximation based on the

approximate product rule, ~d
L

h , yields an error of significantly smaller magnitude, converging to second order.
Hence, simply using a variable regularization parameter e($d, e0), when defining dL

e ðdðC; xÞÞ turns an

inconsistent approximation into one with a first order convergence in grid size. This is indicated in numer-

ical tests, but not proven for general C. However, if smaller errors are desirable, it is worth implementing

the approximate product rule to define ~d
L

h , which yields a second-order approximation. This approximation

is again based solely on the distance function d(C, x) and its gradient, as described in Section 3.1.

4.2. Applications to a class of partial differential equations

In the previous sections, we have discussed the regularization of singular integrands in numerical quad-

rature. The results from this analysis are applicable also for source term regularization in the numerical

solution of differential equations when the location of the source term singularity is given by a level set

formulation.

The solution of a differential equation,
Lu ¼ sðxÞ; x 2 X � Rd ; Bu ¼ rðxÞ; x 2 oX; ð35Þ

can be given as an integral of the fundamental solution G(x, y) multiplying the source term s(x),
uðxÞ ¼
Z

X
Gðx; yÞsðyÞ dyþ RðxÞ; ð36Þ
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where R(x) represents the contribution from the boundary conditions. The solution of a corresponding

numerical approximation can be written on the form
uj ¼
Yd
k¼1

hk

 !X
m2Xh

Gjmsm þ Rj; ð37Þ
where Gjm is the discrete fundamental solution and Xh is the index set for the grid points inside X. Gjm will

be determined by the specific numerical approximation that is used.

Now, let s(y) = d(C, g, y) in Eq. (36). We will consider the solution for x values away from the discon-

tinuity and thus assume that |x � y| P C > e for all y 2 C, and furthermore that d(C, g, y) has compact

support away from the boundaries of X.

We use a regularized delta function for the discrete approximation, and define sm = de(C, g, xm) in Eq.

(37). Considering homogeneous boundary conditions, we have that u(x) is given by Eq. (36) with R(x) = 0
and uj by Eq. (37) with Rj = 0 and where the summation over m can be replaced by m 2 Zd. We can then

write the pointwise difference between the exact solution and the numerical solution as
juðxjÞ � ujj ¼
Z

X
Gðxj; yÞdðC; g; yÞ dy�

Yd
k¼1

hk

 !X
m2Zd

GjmdeðC; g; xmÞ
�����

�����

and so
juðxjÞ � ujj 6
Z

X
Gðxj; yÞdðC; g; yÞ dy�

Yd
k¼1

hk

 !X
m2ZdGðxj; xmÞdeðC; g; xmÞ

�����
�����

þ
Yd
k¼1

hk

 !X
m2Zd Gðxj; xmÞ � Gjm

� �
deðC; g; xmÞ

�����
�����

¼ Iþ II: ð38Þ

The first part (I) of the error is the type of quadrature error discussed in the previous section, where the

function multiplying the delta function is the Green�s function for the continuous problem. We here assume

that de(C, g, xm) is such that this error is O(hq). This argument requires that the Green�s function G(x, y) be

regular away from x = y, which is true for a large class of problems.
Furthermore, if the numerical approximation of the partial differential equation is of order p with
jGjm � Gðxj; xmÞj 6 C1h
p

away from xj = xm, then part (II) of the error is of order p and the total error is
juj � uðxjÞj 6 C2h
minðp;qÞ; ð39Þ
when |xj � x| P C > e for all x 2 C.
Hence, the numerical error is a combination of the discretization error made for the differential equation

and the quadrature error for the regularized delta function.
In more than one spatial dimension, with de(C, x) = de(d(C, x)), there are cases where the quadrature

error is O(1), as discussed in the previous section and in [13]. Because of the estimate above, the poor accu-

racy for the quadrature is expected to carry over to the solutions of differential equations, which was also

shown in [13].

With the improved de approximations for several dimensions introduced in this paper, the quadrature

errors are smaller, and hence, we expect also the results for the solutions of differential equations to

improve.
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Let us consider the Poisson equation in R2,
Fig. 8.

In the

and h2
Lu ¼ �Du ¼ dðC; xÞ; x 2 X � R2;

uðxÞ ¼ vðxÞ; x 2 oX;
where X = {x = (x,y); |x| 6 1, |y| 6 1}. With C a circle, C ¼ fx; jx� �xj ¼ 1=2g, and vðxÞ ¼ 1� log

ð2jx� �xjÞ=2, this equation has the following solution:
uðxÞ ¼
1; jx� �xj 6 1=2;

1� logð2jx� �xjÞ=2; jx� �xj > 1=2:

�
ð40Þ
This solution has been plotted in Fig. 7.

We introduce a N · N uniform grid, with step size h = 2/N in both x and y. To discretize the second

derivatives, we use the standard centered second-order stencil.

The two new techniques for regularizing the delta function introduced in this paper have been tested.
The first one is to define ~deðC; xÞ by the approximate product rule as defined in Eq. (18). Secondly, we define

dL
eðrd;e0ÞðdðC; xÞÞ, with the variable regularization parameter e($d, e0) as defined in Eq. (33). In Fig. 8, the

results are plotted for the case when the circle is centered in �x ¼ ð0; 0Þ. To measure the error away from

C, we introduce the sub-domain
~X ¼ x : x 2 X; jdðC; xÞj > bf g:
0

1
0

1
0.4

0.6

0.8

1

Fig. 7. Solution u(x) as in Eq. (40) for �x ¼ 0.

The errors in different norms for: variable e, with e0 = h (·) and e0 = 2h (+), approximate product rule, e = h (s) and e = 2h (e).

right most frame, the maximum norm is measured over ~X. The dash-dotted and dashed lines in the plots are proportional to h

, respectively. �x ¼ ð0; 0Þ.
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We pick b = 0.2, which is 2h in the coarsest grid, and check the convergence in the maximum norm when

measured over this domain. The result is plotted in the right most frame in Fig. 8.

Clearly, we have a first-order error in maximum norm in all cases (with the maximal error close to C).
For the approximate product rule, the L1-error is second order, as well as the maximum error when mea-

sured away from C.
For the variable e approach, with �x ¼ ð0; 0Þ, in Fig. 8 we see that the convergence in L1 as well as the cut

maximum norm, starts out with higher than first order, coming down to first order as we refine. This error

depends on shifts of C relative to the grid. For this approximation, there is a first-order component of the

error, but it does not in all cases clearly dominate over the second-order term, and for some shifts, we can

note a more mixed result, and a convergence rate closer to two.

For both approaches, the results are better for the more narrow discretization, with e0 = h and e = h,

respectively.

For comparison, in Fig. 9, we also plot the results for dL
e ðdðC; xÞÞ with a constant regularization param-

eter e. For these approximations, we showed for a specific example in Section 2 that the error in the inte-

gration is O(1). As we refine, we therefore expect that the non-decaying part of the error, part I in Eq. (38)

should dominate and hence that the error curves flatten out for smaller grid sizes h. It is clear that the new

consistent techniques introduced in this paper yield much better results also in this case.

Lastly, we point out that, for the types of PDEs that are considered above, the solutions are continuous.

But the proposed technique could in principle also be applied to problems whose solutions have jump

discontinuities. As an example, consider
Fig. 9.

dashed
du
dx ¼ dCðxÞ ¼ dðx� ~xÞ; ~x > 0;

uð0Þ ¼ 0:

�
ð41Þ
The exact solution is uðxÞ ¼ Hðx� ~xÞ. Explicit Euler�s method yields the exact solution away from the jump,

if the zero-order moment condition is satisfied. More precisely,
ujþ1 ¼ uj þ hdeðxj � ~xÞ;

so uj ¼ h

P
jdeðxj � ~xÞ ¼ 1 for xj P ~xþ e. Our proof, however, does not cover this type of problems.

If instead, we consider
uxx ¼ dCðxÞ ¼ deðx� ~xÞ

and xk 6 ~x 6 xkþ1, then standard central differencing for uxx at xk and xk+1 would read, respectively,
The errors in different norms for dL
e ðdðC;xÞÞ with a constant regularization parameter e = h (·), e = 2h (+). The dash-dotted and

lines in the plots are proportional to h and h2, respectively. �x ¼ ð0; 0Þ.
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ukþ1 � 2uk þ uk�1

h2
¼ 1� h

h

and
ukþ2 � 2ukþ1 þ uk
h2

¼ h
h
;

where h ¼ ~x�xk
h and deðxÞ ¼ dL

hðx� ~xÞ. We remark that this discretization is similar to what is derived in the

ghost fluid method [7] for the above equation.
5. Extensions

5.1. Non-distance level set functions

The algorithms developed in Section 3 are based on the use of the signed distance function to C, d(C, x),
as defined in Eq. (3). Now, let C be defined as the zero level set of a level set function /. If / is not a signed

distance function, we can perform reinitialization to reshape this level set function into the distance func-

tion of C, see [8,10] for details. However, in numerical simulations with moving boundaries, one might not

wish to perform such a reinitialization very frequently due to computational cost and accumulation of

numerical errors in the location of these boundaries.
If the level set function / is not a distance function, one cannot simply replace the distance function by /

in the formulas derived in Section 3, since that can again lead to O(1) errors.

To see why this is the case, let /(x) be the one-dimensional level set function: /(x) = px, with p a positive

real number. (with p = 1, / is a distance function). The half-width support of dL
e ð/ðxÞÞ in physical space is

e/p = e/|/x|. In order for even the lowest one-dimensional moment condition (i.e., the mass condition) to be

fulfilled, we need this support to be e = mh, where m is an integer and h is the grid size, which is in general

not the case for p 6¼ 1. Hence, for p 6¼ 1, there will be an O(1) error. In this case, a simple remedy is to scale

the argument, and define de(//|/x|).
So what about a more general /(x) in more than one dimension? Let x0 2 C, i.e., such that /(x0) = 0, and

consider the Taylor expansion
/ðxÞ ¼ ðx� x0Þ � r/ þ R/jx� x0j2;
with the remainder coefficient R/ bounded. The linear approximation Ch of C from x is (x � x0) Æ $/ � /
(x) = 0, implying that the distance between the closest point x0 2 Ch to x is
jx� x0j �
/ðxÞ

jr/ðxÞj :
Hence, given /, we can use //|$/| near its zeros as an approximation to d(C, x) and use e($/, e0) (with e as
defined in Eq. (33)) to define the delta approximation as
deðr/;e0Þ
/ðxÞ
jr/j

� �
: ð42Þ
Using the definition of de in Eq. (11), for |/|/|$/| 6 e = e($/, e0) we can write
de
/

jr/j

� �
¼ 1

e
w

/=jr/j
e

� �
¼ 1

ejr/jw
/

ejr/j

� �
jr/j ¼ 1

~e
w

/
~e

� �
jr/j ¼ d~eð/Þjr/j;
with ~e ¼ ejr/j. Again, d~e is non-zero for / 6 ~e ¼ ejr/j, which is the same condition as above.



Fig. 10. The discretization error E as in Fig. 6, but with delta approximations based on a non-distance level set function /, as defined
in Eq. (44). From left to right: dcos

h ð/=jr/jÞ (constant e), dL
eðr/;hÞð/=jr/jÞ (variable e), and ~d

L

hð/=jr/jÞ (approximate product rule). The

solid lines represent the computed error. The dotted and the dashed lines are proportional to h and h2, respectively.
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Now, we have ~e ¼ ejr/j ¼ e0jr/j1, from the definition of e = e($//|$/|, e0) in Eq. (33). Here, |$/|1 is the
pointwise 1-norm of $/. Hence, we have that
deðr/;e0Þ
/ðxÞ
jr/j

� �
¼ de0jr/j1ð/ðxÞÞjr/j: ð43Þ
As an approximation to the integral over d(C,x) f(x), this yields
Z
deðr/;e0Þ

/ðxÞ
jr/j

� �
f ðxÞ dx ¼

Z
de0jr/j1ð/ðxÞÞjr/jf ðxÞ dx;
which can be compared to the scaling of the non-regularized d-function in Eq. (4).

If |$/| is non-constant, this approximation of the delta function is not equivalent, but rather only an

approximation, to the definition using the distance function. However, if / is smooth and $/ 6¼ 0, with

a small e0 such as e0 = h, it is a reasonable approximation within the region of support of the delta function.

This discussion was carried out for the variable e regularization. The same scalings can be made for the
approximate product formula.

Let us now repeat the numerical experiment, for which the results were displayed in Fig. 6, but in

difference to that case, with the delta approximations based on a non-distance function. Let d(C, x) =
d(C, x, y) be the distance function to C, where C is the capsule shaped curve (Fig. 1) with a ¼ 0:1

ffiffiffi
2

p

and L = 1.4. Define
/ðx; yÞ ¼ dðC; x; yÞðsinð4pxÞ þ 2Þðcosð2pyÞ þ 1:6Þ: ð44Þ

This is a function with the same zero level sets as d(C, x) (i.e., C), but that is no longer a distance function.

We now use / in the delta approximations, and define dcos
h ð/=jr/jÞ, dL

eðr/;hÞð/=jr/jÞ (the variable e ap-
proach) and ~d

L

hð/=jr/jÞ (the approximate product rule). We compute the discretization errors as defined in

Eq. (6) for the line integral in Eq. (34), with ~f ðxÞ ¼ ~f ðx; yÞ ¼ cosðxÞ sinðyÞ. We average the errors over 25

small irregular shifts of C in the grid.

The results presented in Fig. 10, should be compared to those shown in Fig. 6. The only difference is that

the delta approximations is based on the level set function / as defined in Eq. (44) instead of on a distance

function. Comparing these two figures, we can see that the magnitudes of the errors are much larger in this
case, where we use a level set function that is not a distance function. The non-convergence of the constant e
cosine approximation is apparent in this case. Concerning the convergence of the two other approaches, the
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variable e approximation shows a convergence that is at least first order, and even the second-order con-

vergence of the approximate product rule is retained.

5.2. Regularization of characteristic functions

Singularities of lower order than that of the delta function are also common in computations of integrals

and differential equations. One such example closely related to the delta function is the characteristic func-

tion of a set
Fig. 11

(d(C, x
vðX; xÞ ¼ 1; x 2 X � Rd ;

0; x 62 X:

(

Regularization of the characteristic function for a domain is used to represent piecewise smooth functions,

[8,10,15,16], and to define volume integrals of a closed domain X. In the context of level set methods, v(X, x)

can conveniently be expressed as H(d(C, x)), where fx 2 Rd : dðC; xÞ P 0g ¼ X, and H(x) is the so-called

Heaviside function. Thus, we can write
Z
X
f ðxÞ dx ¼

Z
Rd

HðdðC; xÞÞf ðxÞ dx: ð45Þ
One can develop discretely regularized characteristic functions based on the principles of Section 3.2 which

produce high order of numerical accuracy. Define
veðX; xÞ ¼
Z

X

Yd
k¼1

dek ðxðkÞ � nðkÞÞ dn;
where dek is defined in Eq. (11) and we assume that X is bounded in Rd . Tornberg and Engquist showed in

[13] that this regularization yields a discretization error bounded by Chq, if the one-dimensional delta func-

tion is of moment order q.

This approach is however computationally complex since the construction of ve requires quadrature over
a general domain X. It is practically much more convenient to base the multidimensional regularization on

a regularized one-dimensional Heaviside function by He(d(C, x)), with e = e($d, h) as defined in Eq. (33).

The one-dimensional regularized Heaviside function is given by
H eðxÞ ¼
0; x 6 �e;
1
2
1þ x

e

� 	
; �e < x 6 e;

1; x > e:

8><
>: ð46Þ
. Discretization error EX. The plot on the left shows the error from using Hh/2(d(C, x)) and the plot on the right using He($d, h/2)

)) (solid lines). The dotted and dashed lines are proportional to h and h2, respectively.
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Below, we will show numerically, that this approach yields a second-order accurate approximation of the

integral in Eq. (45).

Again let C be the capsule shaped curve (Fig. 1) with a ¼ 0:1
ffiffiffi
2

p
and L = 1.4, and let X be the region

enclosed by C. We compute the integral in Eq. (45) numerically for f ” 1, with the regularized characteristic

function, and define the discretization error EX as
Fig. 12

dashed
EX ¼ h2
X
j2Z2

H eðdðC; xjÞÞ �
Z

X
dx

������
������: ð47Þ
In Fig. 11, this discretization error (averaged over shifts in the grid) is plotted both using a variable

e = e($d, h/2), and with a constant e0 = h/2, to compare. While the errors for the regularization with con-

stant e show only a first-order convergence, the convergence increases to second order as we introduce the

variable regularization, resulting in errors of much smaller magnitude.

5.3. Higher dimensions

The new algorithms presented in Section 3 can both be extended to three dimensions. The variable e
approach easily takes a distance function dðC; xÞ; C; x 2 R3 as its argument, with e still defined by

Eq. (33). In case of the approximate product rule, one then needs to integrate not over piecewise tangent

lines to C, intersecting the support of the product of one-dimensional d approximations, but rather over

tangent planes. This can still be accomplished using only the distance function and its gradient.
Let us present one numerical example for the variable e approach. Define f(x) = curl F Æ nC, where nC is

principal the normal vector to C, pointing into the region where d(C,x) > 0. We have that nC = $d(C, x),
and so we write
Z

C
curl F � nC dS ¼

Z
R3

curl F � rdðC; xÞdðC; xÞ dx: ð48Þ
By Stokes theorem, if F is a C1 vector field in R3, the integral evaluates to be zero. In this example, we will

use F(x, y, z) = (y2, z2, x2).

We let C be the union of two half spheres and a cylinder connecting them (see Fig. 12). The center axis of

the cylinder is parallel to the vector (1, 1, 1) and has length L = 1.5. The shared radius of the cylinder and

the spheres is r = 0.2. The centers of the two spheres are x1 = (�0.7, �0.7, �0.7) and x2 ¼ ð0:8; 0:8; 0:8Þ=
ffiffiffi
3

p
.

. From left to right, the plots show C, the discretization error E for de and EX for He, both with e = e($d, h). The dotted and

lines are proportional to h and h2, respectively.
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We numerically compute the integral to the right in Eq. (48) with de($d, h)(d(C, x)), and compute the

discretization error E according to Eq. (6). The discretization errors are averaged over 100 small irreg-

ular shifts of the position of C, and the result is shown in the left plot of Fig. 12. In the right plot of the

same figure, we show the error EX in computing the volume of X, the region enclosed by C. This is the

three-dimensional version of EX as defined in Eq. (47), with He($d, h)(d(C, x)), with He(x) as defined in
Eq. (46).

In some applications, one needs to compute delta functions concentrating on a higher codimensional

manifold C, such as curves in three dimensions, or, in general, d dimensional manifolds in R2d . Typically

in the corresponding level set methods, e.g. [4], the manifold in question is implicitly defined as the zeros

of a system of level set functions, and additional quantities defined on the manifolds, extended to the whole

space, are also tracked. The delta function is then used to extract these quantities from C. Assume that C is

a curve in three dimensions, and C ¼ fx 2 R3 : /1ðxÞ ¼ 0;/2ðxÞ ¼ 0g. In this case, the approximate prod-

uct approach can easily be generalized to define regularized delta functions for C. Essentially, one needs to
construct tangent line segments of C which can easily be derived from /1, /2, and their gradients $/1 and

$/2. Once the tangent line segments are defined, the integration procedure used in Section 3.1 can be

applied. Further aspects about this topic will be reported in a future paper by the authors.
6. Conclusions

In [13], Tornberg and Engquist pointed out that the most common technique for regularization of Dirac
delta functions in level set simulations is not consistent. This is shown both by analytical and numerical

examples which results in O(1) errors.

In this paper, two new consistent techniques that can conveniently be used in connection to level set

methods are introduced. Both techniques are based solely on the distance to the singularity and thus are

independent of the grid. The first method uses a tensor product of regularized one-dimensional delta func-

tions to construct approximation of the regularized delta function supported on a curve. This technique

gives second-order convergence for singularities on smooth curves in numerical tests. We have proved it

to be first-order accurate. The second technique uses a variable support of the regularization domain.
The size of the support depends on the gradient of the level set function. This latter method is simpler

but numerical examples suggest first-order convergence in most cases, which agrees with our theoretical

results. We also demonstrate that the variable support size approach can be applied to regularize charac-

teristic functions of sets, in which case yielding a second-order accurate approximation with minimal

support of the regularization.

Both techniques can be applied to approximations of a class of PDEs with singular source terms. We have

furthermore discussed a scaling that can be used if the level set function is not a signed distance function.
Appendix A

We derive the the parameters s1; s2; sx0 and sy0 used in Section 3.1. Let $d(C, x)=(cos(h), sin(h)). We con-

sider 0 < h < p/2. The cases when h = 0 or p/2 is trivial. Let (x*, y*) denote (d cos h, d sin h), and~s ¼ ðs1; s2Þ
denote (�sin h, cos h). So (x*,y*) is the closest point to x on C, and ~s is a tangent vector of C at x*, y*.

Furthermore, let sx1 and sy1 satisfy
x� þ sx1s1 ¼ 1;

y� þ sy1s2 ¼ �1;

�
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where sx1 and sy1 denotes the values when the line hits either the right or the bottom coordinate of the sup-

port. Therefore, we take the larger of the two values as s1. It corresponds to the parameter at which C first

exits the support of ~d
L

1:
s1 ¼ maxðsx1; s
y
1Þ and

sx1 ¼ � 1�d cos h
sin h ;

sy1 ¼ � 1þd sin h
cos h :

(

Similarly,
s2 ¼ minðsx2; s
y
2Þ and

x� þ sx2s1 ¼ �1;

y� þ sy2s2 ¼ 1:

�

Next, we find the ‘‘time’’ when the line crosses the two axis. It is important as it determines the evaluation of

|X| or |Y| in dL
e . Denote by (x0, 0) and (0, y0), respectively, the points of intersections with the x- and the

y-axes, see Fig. 3. Then by definitions of sx0 and sy0:

x� þ sy1s1 ¼ 0;

y� þ sx1s2 ¼ 0;

�
)

sx0 ¼ d cot h;

sy0 ¼ �d tan h:

�

Under this construction, integration is only needed in the interval K = [s1, s2]. s
y
0 and sx0 denotes the sign

change in Y(s) and X(s), respectively, and if they fall into K, we need to consider the the integration sep-

arately. This can be summarized into the following four cases: sx0; s
y
0 62 K; sy0 62 Kðs1 < sx0 < s2Þ;

sx0 62 Ks1 < sy0 < s2; and s1 < sy0 < sx0 < s2.
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